Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures.

نویسندگان

  • Shuguang Zhang
  • Fabrizio Gelain
  • Xiaojun Zhao
چکیده

Biomedical researchers have become increasingly aware of the limitations of time-honored conventional 2D tissue cell cultures where most tissue cell studies have been carried out. They are now searching for 3D cell culture systems, something between a petri dish and a mouse. It has become apparent that 3D cell culture offers a more realistic micro- and local-environment where the functional properties of cells can be observed and manipulated that is not possible in animals. A newly designer self-assembling peptide scaffolds may provide an ideally alternative system. The important implications of 3D tissue cell cultures for basic cell biology, tumor biology, high-content drug screening, and regenerative medicine and beyond could be profound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological Designer Self-Assembling Peptide Nanofiber Scaffolds Significantly Enhance Osteoblast Proliferation, Differentiation and 3-D Migration

A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-assembling pept...

متن کامل

Designer Self-Assembling Peptide Nanofiber Scaffolds Containing Link Protein N-Terminal Peptide Induce Chondrogenesis of Rabbit Bone Marrow Stem Cells

Designer self-assembling peptide nanofiber hydrogel scaffolds have been considered as promising biomaterials for tissue engineering because of their excellent biocompatibility and biofunctionality. Our previous studies have shown that a novel designer functionalized self-assembling peptide nanofiber hydrogel scaffold (RLN/RADA16, LN-NS) containing N-terminal peptide sequence of link protein (li...

متن کامل

Designer D-form self-assembling peptide scaffolds promote the proliferation and migration of rat bone marrow-derived mesenchymal stem cells

Self-assembling peptide (SAP) nanofiber hydrogel scaffolds have become increasingly important in tissue engineering due to their outstanding bioactivity and biodegradability. However, there is an initial concern on their long-term clinical use, since SAPs made of L-form amino acid sequences are sensitive to enzymatic degradation. In this study, we present a designer SAP, D-RADA16, made of all D...

متن کامل

Significant Type I and Type III Collagen Production from Human Periodontal Ligament Fibroblasts in 3D Peptide Scaffolds without Extra Growth Factors

We here report the development of two peptide scaffolds designed for periodontal ligament fibroblasts. The scaffolds consist of one of the pure self-assembling peptide scaffolds RADA16 through direct coupling to short biologically active motifs. The motifs are 2-unit RGD binding sequence PRG (PRGDSGYRGDS) and laminin cell adhesion motif PDS (PDSGR). RGD and laminin have been previously shown to...

متن کامل

Designer self-assembling Peptide nanofiber scaffolds for study of 3-d cell biology and beyond.

Biomedical researchers have become increasingly aware of the limitations of the conventional 2-D tissue cell cultures where most tissue cell studies including cancer and tumor cells have been carried out. They are now searching and testing 3-D cell culture systems, something between a petri dish and a mouse. The important implications of 3-D tissue cell cultures for basic cell biology, tumor bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Seminars in cancer biology

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 2005